Implementasi Neural Network untuk Monitoring Level CPO dan Pengendalian Pompa Berbasis Arduino dan Aplikasi Android pada Tangki Bulking dalam Rangka Transformasi Industri 4.0
Kata Kunci:
Neural Network, Arduino, Sensor Ultrasonik, Kecepatan Pompa, Tangki Bulking, CPO, Industri 4.0Abstrak
The application of automatic technology based on artificial intelligence is one of the important elements in supportingthe transformation towards Industry 4.0, especially in the palm oil industry sector. This study aims to develop a CrudePalm Oil (CPO) level monitoring system in a bulking tank using an ultrasonic sensor and automatically regulate thepump speed based on the classification of the Neural Network (NN) results implemented on an Arduino microcontroller.The designed system utilizes an HC-SR04 ultrasonic sensor to read the CPO surface height, then the data is processedthrough an artificial neural network model with one hidden layer containing three neurons and six output classes todetermine the pump speed level. The results of this conversion become a PWM signal which is used to control the pumpmotor through the motor driver. Testing was carried out 10 times with variations in liquid height, showing that the sensorhas a high level of accuracy with an average error of 0.13 cm. The NN model produces a classification accuracy of 100%on the test data, and the motor speed control runs proportionally to the liquid level. This system has proven to beresponsive and capable of controlling fluids efficiently and in real-time. The results of the study indicate that thisapproach is feasible to be applied for intelligent and adaptive automation of filling and emptying CPO tanks, in line withthe principles of Industry 4.0Referensi
M. Maruf Ibrahim, “Rancang Bangun Sistem Pengendalian Ketinggian Air Berbasis PLC dan Reinforcement Learning Dengan Deep Deterministic Policy Gradient Agent,” Depok, Jul. 2021. doi: 10.13140/RG.2.2.26263.38565.
Alfian Ma`arif, Naufal Rahmat Setiawan, and Eka Suci Rahayu, “Embedded Control System of DC Motor Using Microcontroller Arduino and PID Algorithm,” IT Journal Research and Development, vol. 6, no. 1, pp. 30–42, Aug. 2021, doi:10.25299/itjrd.2021.vol6(1).6125.
Satria Darma Bakti Ramadhan, Nur Khamdi, and Tianur, “Rancang Bangun Prototype Alat Monitoring Tangki Bahan Bakar Solar di PLTD Berbasis IoT,” PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika, vol. 16, no. 2, pp. 257–266, Sep. 2023.
Galih Permana Aji and M Iqbal Romzy, “Identifikasi Kematangan Buah Pepaya Dengan Pendekatan Non Destruktif,” Yogyakarta, Jul. 2024.
J. Nasir et al., Robot dan microcontroler. Padang: CV. Gita Lentera, 2024. [Online]. Available: https://www.researchgate.net/publication/378488230
Anton Yudhana et al., “Prototipe Smart Urinoir Berbiaya Murah Pendeteksi Kelainan Ginjal Berbasis Artificial Intelligence,” 2024.
Diah ayu retnani wulandari, Saiful Bukhori;, Yudha Alif Auliya;, Mohammad Zarkasi;, and Tio Dharmawan, Deteksi Kemurnian Susu berbasis Neural Network dan Sensor. Jember: UM Jember Press, 2023, 2023.
A. N. Az-Zikri, S. Indriyanto, and A. Wicaksono, “PERANCANGAN PROTOTIPE SISTEM MONITORING LEVEL AIR TANDON BERBASIS
INTERNET OF THINGS (IOT) MENGGUNAKAN SENSOR ULTRASONIK JSN-SR04T,” Jurnal SINTA: Sistem Informasi dan Teknologi Komputasi,
vol. 2, no. 1, pp. 13–22, Jan. 2025, doi: 10.61124/sinta.v2i1.38.
K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” Measurement (Lond), vol. 89, pp. 204–214, Jul. 2016, doi: 10.1016/j.measurement.2016.04.019.