Sistem Penyimpanan Energi Baterai (BESS) untuk Optimasi Beban Puncak: Solusi Cerdas Efisiensi Energi Industri

Sofyan Sofyan, Ng Rong Wee, Umar Muhammad, Herra Hamdani Hakim

Sari


Batterey Energy storage system (BESS) telah muncul sebagai solusi inovatif untuk meningkatkan efisiensi energi pada sektor komersial dan industri, khususnya melalui implementasi metode Peak Shaving. Teknologi ini memungkinkan penyimpanan energi selama periode permintaan rendah dan pemanfaatannya selama permintaan puncak, sehingga mengurangi beban pada jaringan listrik. Penelitian ini mengeksplorasi integrasi BESS dalam mengelola beban listrik untuk menurunkan konsumsi energi puncak sambil meningkatkan efisiensi operasional dan stabilitas sistem tenaga. Dengan memanfaatkan data profil beban harian dan parameter BESS, sistem dikembangkan untuk mengatur proses pengisian dan pengosongan guna mencapai keseimbangan energi yang optimal. Hasil simulasi menunjukkan bahwa implementasi BESS dapat mengurangi beban puncak hingga 50%, mendistribusikan energi lebih merata sepanjang hari, dan meningkatkan keandalan serta efisiensi jaringan listrik. Teknologi ini juga menawarkan manfaat lingkungan dengan mengurangi ketergantungan pada pembangkit listrik berbahan bakar fosil dan mendukung transisi menuju sistem energi yang lebih berkelanjutan.

Kata Kunci


BESS

Teks Lengkap:

PDF

Referensi


A. Saldarini, M. Longo, M. Brenna, and D. Zaninelli, "Battery Electric Storage Systems: Advances, Challenges, and Market Trends," Energies, vol. 16, no. 22, doi: 10.3390/en16227566.

K. Prakash et al., "A review of battery energy storage systems for ancillary services in distribution grids: Current status, challenges and future directions," Frontiers in Energy Research, vol. 10, p. 971704, 2022.

W. Zhang and S. Wang, "Optimal Allocation of BESS in Distribution Network Based on Improved Equilibrium Optimizer," Frontiers in Energy Research, vol. 10, 2022, doi: 10.3389/fenrg.2022.936592.

M. A. Hoque, M. K. Hassan, A. Hajjo, and T. A. Taha, "Investigation of Battery Energy Storage System (BESS) during Loading Variation," Journal of Advanced Research in Applied Mechanics, vol. 110, no. 1, pp. 86-96, 2023.

R. Colucci, I. Mahgoub, H. Yousefizadeh, and H. Al-Najada, "Survey of Strategies to Optimize Battery Operation to Minimize the Electricity Cost in a Microgrid With Renewable Energy Sources and Electric Vehicles," Ieee Access, vol. 12, pp. 8246-8261, 2024, doi: 10.1109/access.2024.3352018.

S. A. Assery, X.-P. Zhang, and N. Chen, "Large-Scale BESS for Damping Frequency Oscillations of Power Systems with High Wind Power Penetration," Inventions, vol. 9, no. 1, doi: 10.3390/inventions9010003.

A. Shahmohammadi, R. Sioshansi, A. J. Conejo, and S. Afsharnia, "The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation," Energy Conversion and Management, vol. 162, pp. 307-320, 2018.

F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, "A review of energy storage technologies for wind power applications," Renewable and sustainable energy reviews, vol. 16, no. 4, pp. 2154-2171, 2022.

S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, and H. Mokhlis, "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, vol. 25, pp. 135-165, 2023.

P. B. L. Neto, O. R. Saavedra, and L. A. de Souza Ribeiro, "A dual-battery storage bank configuration for isolated microgrids based on renewable sources," IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1618-1626, 2018.

N. Belmonte et al., "A comparison of energy storage from renewable sources through batteries and fuel cells: A case study in Turin, Italy," International Journal of Hydrogen Energy, vol. 41, no. 46, pp. 21427-21438, 2021.

M. Rostami and S. Lotfifard, "Scalable coordinated control of energy storage systems for enhancing power system angle stability," IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 763-770, 2022.

O. M. Babatunde, J. L. Munda, and Y. Hamam, "Power system flexibility: A review," Energy Reports, vol. 6, pp. 101-106, 2020.

M. Moazzami, J. Moradi, H. Shahinzadeh, G. B. Gharehpetian, and H. Mogoei, "Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system," International Journal of Renewable Energy Research (IJRER), vol. 8, no. 2, pp. 1155-1164, 2018.

R. Bhatt and B. Chowdhury, "Grid frequency and voltage support using PV systems with energy storage," 2021: IEEE, pp. 1-6.

T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.-G. Olabi, "Advances in stationary and portable fuel cell applications," International journal of hydrogen energy, vol. 41, no. 37, pp. 16509-16522, 2021.

S. Srinivasan, Fuel cells: from fundamentals to applications. Springer Science & Business media, 2023.

M. Alhassan and M. U. Garba, "Design of an alkaline fuel cell," Leonardo Electron. J. Pract. Technol, vol. 5, pp. 99-106, 2016.

G. Kaur, "Solid oxide fuel cell components," Switzerland: Springer, 2016.

N. H. Behling, Fuel cells: current technology challenges and future research needs. Newnes, 2012.

D. W. Gao, Energy storage for sustainable microgrid. Academic Press, 2015.

J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, "Defining control strategies for microgrids islanded operation," IEEE Transactions on power systems, vol. 21, no. 2, pp. 916-924, 2021.




DOI: https://doi.org/10.61141/joule.v6i2.772

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

INDEXES IN

                                 

Jalan Kapasa Raya No. 23 (KIMA)
Makassar-Sulsel 90245
Email: Joule.TLS@politeknikbosowa.ac.id
https://journal.politeknikbosowa.ac.id/

 


View My Stats

 

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0 International License.